CALCULATION OF THE TEMPERATURE FIELD
IN A GAS VENTILATED CHARGE OF
FINE-POROSITY MATERIAL

I. K. Dmitrieva and V. T. Kazazyan UDC 536.246:532.546

The temperature distribution is obtained for a gas-ventilated layer of fine-porosity material
containing internal heat sources and cooled with a turbulent stream of liquid. Both parallel
flow and counterflow of the two heat carriers are analyzed.

The problem of temperature distribution in a gas-ventilated charge, taking into account the heat
transfer between the container walls and the cooling stream, has been considered mainly in studies in
which the presence of internal heat sources is disregarded or an approximate solution is given [1-3]. All
these studies are concerned with the case in which a stationary gas-ventilated charge of comminuted
material is cooled with a stream of liquid, the temperature of which does not vary along the height. In
heat-engineering practice, however, it is much more often found that there is a simultaneous temperature
variation in the ventilated layer and in the coolant. The gas and the coolant may be flowing in the same
direction or in opposite directions.

We will consider the temperature field in a gas-ventilated charge of finely dispersed material con-
taining uniformly distributed bulk-heat sources and the temperature field in the turbulent cooling liquid.

For this case the temperature distribution is found from the solution of a system of differential equa-
tions set up under the following assumptions: 1) the ratio of charge diameter to particle diameter D/d, the
charge being contained in a cylinder, is such that the mass rate of gas flow is constant over the cross sec-
tion; 2) the thermal resistance of the container walls is small; 3) the mass rates of gas and liquid flow as
well as the thermophysical properties are invariable; 4) the coefficients of heat transfer between the walls
and the coolant are constant over the height; 5) the effective thermal conductivity of a layer is the same in
the axial and in the radial direction; 6) the heat generated in the charge is immediately dissipated in rais-
ing the temperature of the mainstream.

With these assumptions, the system of equations is:
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The problem will be solved by the Fourier method.

In the second of Eqs. (1) the plus sign refers to a parallel flow of heat carriers and the minus sign
refers to a counterflow of heat carriers.

The boundary conditions are the same in both cases considered here:
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the initial conditions are, for parallel flow,

Hoo=1ly  llmg =1t Illzow limiy (32)
and, for counterflow,

theo =1ty tl=r =t flew limit, (3b)
where L is the channel height.

We introduce the following designations:
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We first extract the singularities in the solution, writing the latter in the form:

Hr, y=7(r, )+ Az-+ Br* + F,
Ly =1+ Ez+D.
The coefficients in Eqgs. (4) are determined so that the particular solutions will satisfy Egs. (1) and the
boundary conditions (2). Then,
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For the unknown functions 7 and 7, we obtain the following system of equations:

0%t 1 ot o*t ot

J— . —1'— —_— — = 0,

or® r or 0% 0z

. (6)
L= 4 c[t(R, 2)—1, (9],

0z

gl[ _p I
or ire=0 ’ or [r=R

—_ —% [T(R, 2 —1,(2)], ™

with the initial conditions for parallel flow
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and for counterflow
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The solution to system (6) will be sought in the form of a series:
'L'(f, Z): zAn(Pn (f)fn(Z). (8)
n==1

In accordance with the constraints at r = 0 and z — «, we have chosen the following solutions:
@ (r) = dy (kyr),
Fa (@) = (i— AL (82)
n (Z) = exp 2 *4— + n N
The solution

P (r) = 1o (kat),
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has no physical meaning, since there can be no unlimited temperature rise with increasing r in the pres-
ence of internal heat sources.

From the second equation in (6) we determine 7,(z):
@ { '”’2—“‘
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T (@) ==%c Ty (k,R) —* F— (9)

Inserting this solution into the boundary condition at r = R, we obtain the characteristic equation for de-

termining the values of ky:
(1 B
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Since often in practice R = 103, Eq. (10) becomes

MZ F dR®
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for not very high values of u, =k, R. The first five roots of Eq. (10a) for parallel flow and for counterflow
with dR? = 6.72 are listed in Table 1.

The largest difference between values of the roots is observed in the fundamental mode. At high
values of n the values of the roots will be slightly lower than the correspondmg roots of equation Jy{uy) = 0
for both types of flow. It is to be noted that at low values of Bi (Bi < dRr? /2) the values of the first roots of
Eq. (10a) increase much more in the case of counterflow than in the case of parallel flow.

The coefficients Ay are determined from the initial conditions (7) and (7a) at z = 0:

Adybor) =ty + ———  _F. (11)
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TABLE 1. Values of the First Five Roots of the Charac-
teristic Equation (dRz =6.72)

uﬂ
Bi
|3 M2 Us e s
For parallel flow
1 2,530 4,214 7,176 10,277 13,401
3 2,480 4,645 7,457 10,470 13,551
5 2,459 4,878 7,674 10,646 13,690
3 2,445 5,065 7,893 16,856 13,872
i0 2,438 5,141 &,010 10,965 13,975
For counterflow
i 4,008 T 7,140 18,265 13,386 t 16,53
M 4,330 7,371 10,441 13,536 16,65
5 1,174 4,575 7,568 10,600 13,667
8 1,680° 4,794 7,793 10,800 13,842
10 1,835 4,926 7,907 10,909 13,941

After necessary transformations, we have
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For finding the constant term F we use the boundary conditions for 7,(z). We now consider parallel
flow and counterflow separately.

For parallel flow at z = 0 the equality
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together with expression (12) yields, after necessary transformations:
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Analogously, for counterflow at z = L the equality
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Taking into account expressions (5a}, {8), and (12), we findlly obtain from (4) the temperature distribution
in the ventilated layer:
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The values of K and gy are determined from the relations
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The temperature distribution in the coolant along the channel height is, for parallel flow and for counter-

flow respectively,
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where
At =1, —t,,.

In expressions (13) and (14) the upper 51gn applies to parallel flow and the lower sign applies to

counterflow.

The results which have been obtained here for counterflow are valid when dR? = 2Bi.
tain a solution when dR? = 2Bi, we must revert to Eqgs. (1), (2), (3) and insert there dR? = 2Bi.
tion can then be sought directly in the form of a sum:

In order to ob-
The solu-
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Fig. 1. Temperature distribution in a ventilated layer:
a) with parallel flow cooling; b) with counterflow cooling;
dR? = 6.72; Bi=10; €R = 550; t, = 200°C; t;, = 40°C.

(0, D = A0n (O, 2, (15)

n=\

where the values of ¢, (r) and f,(r) are determined according to Eq. (8a). The value of py here will be the
solution of the transcendental equation

p2 -+ 2Bi
w, Bi

n

__JO (!“Ln) -+ Jl (“‘n) =0.

. & is evident from Eq. (10a) that the first root of systems (1), (2), (3) is equal to zero and, therefore, the
first term of sum (15) is a constant. At large z values the temperature t(r, z) is independent of the channel
height.

When dR? > 2Bi, the first root near unity vanishes in the sums of expression (13). The values of
several successive roots are comparable and, therefore, must all be taken into account. Along the asymp-
totic portion of expression (13), where only one or two terms of the sums need to be considered, it is al-
ways the case that toounter(rs 2) < tparallel(r. 2).

The solutions for both t(r, z) and t;(r, z) depend strongly on the parameter dR?, which is proportional
to the ratio of water equivalents B/B;. A decrease of this ratio down to 8/8; — 0 will cause the tempera-
ture distribution in the coolant to approach t((z) = const in both cases considered here and, consequently,
the difference between parallel flow and counterflow will be erased. In the absence of heat sources, the
expression for t(r, z) corresponds now to the earlier case of a ventilated layer cooled with a liquid at con-
stant temperature [2].

A comparison of the solutions for the case without a heat source (b = 0) will show that, for a more
effective cooling of a ventilated layer, parallel flow is needed when Bi £ dr?/2 {(oy >1) and counterflow is
needed when Bi > dR%/2 (0y < 1), if At >0.

When a heat source is present (b = 0) and the ratio of water equivalents 8/g, is smaller than 2Bi,
then the parallel flow arrangement is more effective than the counterflow arrangement up to moderate
heights z; but as z increases, the difference in temperatures tparallel(s> 2)~tcounter(rs z) changes sign.
A typical temperature distribution in a ventilated layer with parallel flow and with counterflow cooling is
shown in Fig. 1a, b. The following data were used for the calculations here: dr? = 6.72, Bi = 10, t,
= 200°C, and t{y = 40°C; the values of parameters b and eR were varied from 107 to 3-107 and from 550 to
1100, respectively. Evidently, the asymptotic range with a linear dependence on z is reached sooner as
less heat is generated in the bulk. The radial temperature gradient is in this range proportional to the
heat generated in the bulk. A characteristic peculiarity of the temperature distribution in a counterflow
arrangement is the occurrence of a peak, while the temperature continues to rise in a parallel flow ar-
rangement. Based on a comparison between these results, there follow two criteria choosing the ap-
propriate cooling arrangement: 1) if lower mean-over-the-height temperatures in the charge are desired,
then parallel flow is preferable; 2) if a more uniform temperature distribution over the height of a charge
is desired, then counterflow is preferable.
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Fig. 2. Mean-over-the-radius temperature as a function of the
layer height: a)eR = 550; ¢R = 1100. Parallel flow (I) and
counterflow (I).

The basic difference characterizing the peripheral regions of a charge is retained when one considers
the mean-over-the-radius temperatures described by the following relation:

A, bR%dz
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and represented graphically in Fig. 2a.

1t is evident that the difference between parallel flow and counterflow in the degrees of temperature
uniformity over the height of a charge increases asb = q,/A becomes larger. We note that along a definite
distance the temperatures tend to equalize and the point where the curves for parallel flow and for counter-
flow intersect depends on the magnitudes of b and eR. Increasing the flow rate of the ventilating gas causes
a shift of the intersection point to the left, i.e., a drop of the mean-over-the-length temperature in the
case of counterflow cooling. Thus, as the value of eR increases, the counterflow arrangement yields a
more uniform and intensive cooling of a gas ventilated fine-dispersion layer (Fig. 2b). With all the other
conditions unchanged, the same effect will be observed also when dR? increases.

It is to be noted that a special case of the solution shown here is the temperature field in a solid
cylinder with heat sources uniformly distributed over its volume, corresponding to the value g = 0 in
Eq. (1).

NOTATION
t, 4 are the temperature of the charge layer and of the cooling liquid, respectively;
R, r are the outer radius and radius at any point of a cylindrical charge;
A is the effective thermal conductivity of a layer;
W, Vs Cp are the velocity, specific gravity, and specific heat of the ventilating gas, wyep = 85
Wi, Yy, Cpy  are the velocity, specific gravity, and specific heat of the coolant, WiYiCpt = Bi3
Ay is the heat generated in the bulk;
o is the mean coefficient of heat transfer between wall and coolant;
n/s is the ratio of the perimeter of the layer to the area occupied by the coolant.
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